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Reflection of a shallow-water soliton. 
Part 2. Numerical evaluation 
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Reflection of a shallow-water soliton at a plane beach is investigated numerically 
based on the edge-layer theory developed in Part 1 of this series. The offshore 
behaviour in the shallow-water region is first obtained by solving the Boussinesq 
equation under the ‘reduced ’ boundary condition. The spatial and temporal varia- 
tions of the surface elevation are displayed for two typical values of the inclination 
angle of the beach. Using these solutions, the nearshore behaviour is then evaluated 
to obtain the surface elevation and the velocity distribution in the edge layer. Both 
offshore and nearshore behaviours furnish a full knowledge of the reflection problem 
of a shallow-water soliton. To check the applicability of the edge-layer theory, a 
‘computational experiment ’ is carried out based on the boundary-element method, 
in which the Laplace equation is solved numerically under the fuZ2 nonlinear 
boundary conditions at the free surface without introducing the edge-layer concept. 
Both results show a fairly good agreement for the overall reflection behaviour of a 
shallow-water soliton except for the surging movement at the shoreline. 

1. Introduction 
This paper deals with a numerical study of a reflection problem of a shallow-water 

soliton at a sloping plane beach based on the edge-layer theory developed in Part 1 
(Sugimoto & Kakutani 1984; hereinafter referred to as I). The edge-layer theory 
consists of two parts; one dealing with the offshore behaviour and the other the 
nearshore behaviour. As far as the offshore behaviour is concerned, the reflection 
problem is dramatically simplified by the concept of the edge layer. In  fact, the 
‘reduced’ boundary condition obtained in I reflects a complicated nearshore be- 
haviour in a compact form without loss of essential features and makes it possible to 
reduce the reflection problem to a boundary-value problem for the Boussinesq 
equation. 

On the other hand, the nearshore behaviour such as a shoaling process can be 
obtained just after the offshore behaviour has been clarified. The numerical calcu- 
lation is carried out for the inclination angle 6 = $  and 6 =&z with the wave 
height-to-depth ratio a = 0.07. As was remarked in I, the behaviour in the edge layer 
is ‘ linear ’ because the horizontal dimension of the beach region is too narrow for the 
nonlinearity assumed in the shallow-water region to accumulate. Within the linear 
theory, therefore, the surging movement of the shoreline along the beach surface 
cannot be described, only an elevation (which we regard as the maximum ‘run-up’ 
in the linear theory) at the quiescent shoreline can be calculated. This may cast doubt 
on the validity of the linear theory near the shoreline. However, we are satisfied with 
the endorsement by the theory of full nonlinear shallow-water waves near the 
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shoreline which states that its exact regular solution approaches a (regular) linear 
one for a sufficiently small amplitude (Carrier & Greenspan 1958). 

In order to confirm the applicability of the edge-layer theory, a 'computational 
experiment' is carried out based on the boundary-element method developed in 
diverse applications (for example, Jaswon & Symm 1977; Brebbia 1984) and 
particularly devised for a run-up problem by Kim, Liu & Liggett (1983). Without 
introducing any physical simplification such as the edge-layer concept, the Laplace 
equation is solved numerically over the whole region under the full nonlinear 
boundary conditions at the free surface. Numerical results thus obtained are 
displayed separately for the shallow-water region and for the nearshore region to 
facilitate a qualitative and quantitative comparison with the results obtained by the 
edge-layer theory. Due to the exact treatment of the boundary conditions at  the free 
surface, the surging movement of the shoreline is now explicitly obtained so that the 
actual maximum run-up (the vertical elevation a t  the surging-up shoreline) can be 
calculated. Except for this surging movement, the edge-layer theory gives fairly good 
results for the overall reflection behaviour of a shallow-water soliton. 

2. Summary of the edge-layer theory 
In this section, we summarize the main results of the edge-layer theory developed 

in I and, in part, extend them to incorporate higher-order terms. Unless otherwise 
stated, the same notation as in I will be used throughout. We consider two- 
dimensional and irrotational wave motion of an inviscid fluid in a constant-depth 
shallow-water region that extends semi-infinitely in the positive x-direction and is 
bounded by a plane beach with an inclination angle B at one end. The origin of the 
coordinate x is assumed to be at the toe of the slope and the beach is assumed to 
extend over a narrow region - x, < x < 0, where - x, is the position of the shoreline 
at the still water level and x, 5 O(1). 

By taking account of the weak effects of both the nonlinearity and dispersion, a 
behaviour in the offshore shallow-water region is assumed to be described by the 
Boussinesq equation for the velocity potential f in the lowest approximation : 

where the free-surface elevation 7 is given by 

In the above equations, the horizontal coordinate x and the time t are normalized, 
respectively, by a characteristic wavelength Z and a characteristic time l /(gh)t ,  where 
h is the constant depth in the shallow-water region and g is the acceleration due to 
gravity, whilefis normalized by agZ/(gh)i, a being a characteristic wave elevation from 
the still-water level ; the subscripts denote partial differentiation with respect to the 
indicated variable. Here we recall that the small parameter a ( = a/h)  measures weak 
nonlinearity while @ (= (h/Z)2) measures weak dispersion. 

t In this series of papers, equation (2.6) in I is referred to aa the Boussinesq equation which is 
of a form capable of describing bi-directional wave propagation. For derivation of (2.1), see 
Whitham (1974), Miles (1977) and Wu (1981). In the corresponding expression (2.6) in I, we omitted 
aa in O(a8, $). The nonlinear term tCf:)t in (2.6) in I has been replaced equivalently by fJ,, in 
(2.1) by using the fact ftt 2: f,, + O(a, 8). The latter is preferable in connection with the numerical 
calculations and the higher-order Boussinesq equation discussed in Appendix A. 
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From the edge-layer theory in I (cf. (4.7)qin I), it was found that the ‘reduced’ 
boundary condition relevant to (2.1) is given by 

f, = ~fz,-b2fz,,+b”f,,,,+~C.”,~ a t% = 0, (2.3) 

where p = xs( = 5, in I) = f i  cot 8 5 O(1). For small values of p of O(f i ) ,  it is 
sufficient to consider only the first term on the right-hand side of (2.3). However, as 
p becomes larger, the higher-order terms of p must be included in (2.3). Here note 
that the second and the third terms on the right-hand side are of comparable order 
of magnitude because f,,, x f X t t  and f,.,, x f Z Z t t ,  bhile f, x pf,, in the lowest 
approximation of (2.3). At any rate, it is this ‘reduced’ boundary condition that 
reduces the reflection problem to a boundary-value problem for (2.1) to be solved in 
the shallow-water region z > 0. . 

On the other hand, the nearshore behaviour can be described by the edge-layer 
solution. The boundary value of &he velocity potential 4, and that of the surface 
elevation 7, a t  the matching region (E-. 00 but z+O) between the edge-layer and 
the outer shallow-water region are given by 

4, = f +@fZ E+!$!z,(~~ -2’) +@fsz,(F- 

vs, = - f t  - &,t 6 - $fz,t(Ea - 1 - Vfzzzt(E3 - 35) - +Pfzzz,(E4 -6Ea + 1) 

+&Wx,,,(E4-6[aza + z4) +Oh5) ,  
( 2 . 4 ~ )  

’ - $ f: + Ob’, par), (2.4 b) 

which correspond to (3.5~) and (3.5b) in I respectively. In  the above expressions, 
E ( = 8-t~) and z imply, respectively, the horizontal and vertical coordinates in the 
edge layer, both normalized by h. In  (2.4a, b), we have retained the terms of a 
higher-order with respect to p than those in ( 3 . 5 ~ ~  b) in I (note that 5 = -cot 8 a t  
the shoreline), in order to apply (2.4a, b) to a fairly large value of p such that 
O(@)  < p < O(1). In  the context of the edge-layer theory, f and its derivatives with 
respect to x and t are known functions of time t .determined from the solution of the 
Boussinesq equation a t  5 = 0. 

For a plane beach given by 5 = b(z)  = -(cot 8) z, the boundary condition (4.6) in 
I reads as 

I 

2fz($‘t+cot = - f . + ~ ~ f z , ~ - ~ ~ z z 5 ~ 2 + ~ 3 f 2 2 x z ~ 3 + ~ o c 4 ~ B ~ ~  (2.5) 

where $ = $ ( E ,  z, t) denotes the deviation of the velocity potential #( f ,  z, t) in the edge 
layer from the boundary value (cf. (3.7) in I): : 

4 = 4,+2fif.$. (2.6) 

Upon using the ‘reduced’ boundary condition (2.3) to eliminate f,,,, in (2.5), the 
integral expression of the edge-layer solution $ takes’ the following form : 

and 
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which correspond to (5.14a, b) in I ([* being the complex conjugate of C), but again 
by retaining the higher-order terms with respect to ,u. We recall that the above results 
hold only for a beach angle 8 = x/m, where m is a positive integer (m 3 2 ) .  Since 
f,, fis, and f,,, are known functions of time, the edge-layer solution + in (2.7) can 
be obtained only by a quadrature. 

Before carrying out the integration, it is instructive to understand the nature of 
the transformation between the complex planes 2’ and 5‘ via w’ introduced in I : 

1 m-i 
z’ = -- x wj log (w’-wj), = j-0 

with 

( 2 . 8 ~ )  

(2.8b) 

where z’ = E‘ + id, [’ = [; + i[i, and the principal value of the logarithmic function is 
defined by considering the range - x G arg log (. . .) < x. The asymptotic behaviour 
of ( 2 . 8 ~ )  as m+oO is particularly useful for the present purpose even if m takes 
relatively small values such as m x 10. Noticing that for large values of m, ( 2 . 8 ~ ~ )  
is nothing but the trapezoidal rule for the following integral along a unit circle in the 
complex plane W: 

log (w’- W)dW+O(m-2), (2.9) 
- 2’ -‘f * 

m 2x2  

the asymptotic behaviour of z’ can be evaluated with the aid of Cauchy’s integral 
theorem. Much attention must be paid, however, to the location of w‘ because W = w’ 
is a branch point. If w’ is located outside the circle, that is, lw’l > 1 + O(m-’), the 
integral (2 .9 )  vanishes so that the outside region is mapped into the region near the 
origin of 2 .  If w’ is located inside the circle, that is, lw’l < 1 -O(m-l), on the other 
hand, the evaluation of ( 2 . 8 ~ )  must be carefully done because the branch cut for the 
logarithmic function necessarily crosses the unit circle. Introducing the cut in the 
W-plane as shown in figure 1, the summation ( 2 . 8 ~ )  is rearranged as 

~ 1 0 g ( w ’ - w 0 ) + ~ , ~ ,  log(w’-wm~,)+~log(w’-wo) 

m-2 1 

Except for the first two terms, all the terms can be replaced asymptotically by the 
contour integral along an open unit circle C from W = wo( = 1) to W = w,-~. When 
the auxillary contour C‘ starting from W = wm-, to W = wo, partly along the unit 
circle and partly along the branch cut shown in figure 1, is introduced, the original 
integral along C is equivalently replaced by that along C‘ (with the sign reversed). 
Evaluation of the latter by the trapezoidal rule leads to 

(2.11) 

This asymptotic relation states that the wedge region of w’ shown in figure 4 in I 
inside the unit circle corresponds to the region in the 2-plane near the shoreline 
without any distortion except the uniform expansion due to the factor m/n. The unit 
circle lw’l = 1 separating the above two regions corresponds to the imaginary axis in 
the c-plane (figure 3 in I), which corresponds to the curve in the 2’-plane (figure 2 
in I) starting from a definite point on the beach ( - a-’ log 2, im-’ log 2) and extending 
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FIQTJRE 1. Complex W-plane where the cut is introduced from W = w' = Iw'Je-'#(O < 4 < 6 = x /m)  
to infinity along the straight line on which arg W = -4. Contour C is an open unit circle starting 
from w, to w ~ - ~ ,  while C' is a part of the unit circle starting from w,-~ to w, with the detour along 
the branch cut. 

monotonically towards infinity (00,ii). The remaining narrow strip region in wf  
spreading around lw'l = 1 with a width of O(m-l) corresponds to the region in the 
2-plane on both sides of the curve corresponding to lw'l = 1. 

From the definition of gl in (2.8b), on the other hand, the region, except in the 
neighbourhood of gl = - 1 and gl = 1, is mapped on to a region very close to lwfl = 1 
as m+ CQ. In other words, only the two regions extremely near gl = - 1 and gl = 1 
correspond, respectively, to the inside and outside regions of the unit circle lw'l = 1. 
Although the beach in the 2-plane, i.e. 5' = - (tanB)'z', corresponds to the real axis 
ICI < 1 in the gl-plane, the major part of the beach is closely packed near the point 

= - 1. This correspondence is given asymptotically by 

wf e-ie Mgl+ 1 1)l"". (2.12) 

From both relations (2.11) and (2.12), the major part of the beach is given by 

(2.13) 

This result suggests that when the integral in (2.7) is carried out with respect to C, 
the main contribution comes from the narrow region near C = - 1. Thus the 
numerical integration is carried out by dividing the interval ( -  1 , l )  into small 
intervals, whose length is decreased exponentially toward C = - 1 ,  and further on 
subdividing each small interval by equally spaced points to apply Simpson's rule. 

After evaluating +, the elevation 7 is obtained from (3.10b) in I aa 

9 = 9,-2/Wz$)t at = 1 ,  (2.14) 

while the velocity components are calculated by differentiating the velocity potential 
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(2.6) with respect to 6 and z. In  the latter process, the derivatives off, @ are evaluated 
by the following integrals: 

where C (  = &+i&) is a point 6' = C corresponding to 2' = 2 (= [+iz) through the 
transformation (2.8a, b ) ;  R and I are defined by the real and imaginary parts of the 
inverse of the Schwarz-Christoffel transformation (5.3) in I : 

(2.16) 

3. Results of the edge-layer theory 
Let us first investigate the offshore behaviour in the shallow-water region by 

solving the Boussinesq equation (2.1) under the condition (2.3). It is numerically 
solved here by an implicit finite-difference method. Although we are interested in 
reflection of a soliton incident from infinity to shoreward, we are obliged technically 
to introduce another 'numerical' boundary located a t  x = L, say, far enough from 
the one at x = 0. Hence the reflection problem is posed as an initial-boundary-value 
problem in such a way that a soliton initially located at x = C(0 Q C 4 L )  is pushed 
shoreward as if it were propagated from z = 00. The surface elevation of a single 
soliton solution with unit peak propagating shoreward with a constant speed h is 
given by 

with A = 1++a, and D = [3a/(4BA2)]!. To derive (3.1), we have used the following 
steady-progressive-wave solution for the velocity potential f :  

7 = sech2 [D(z+ht-C)], (3.1) 

1 
f = -- AD tanh[D(x+ht-C)], (3.2) 

discarding terms of O(a,P). In  this regard, we remark on the accuracy of the 
approximation involved in the shallow-water theory. Equations (2.1) and (2.2) might 
appear to give a correction to the linear theory up to O(a,B) inclusive. But f is 
specified only within the order of unity, since ftt -fzz = ( A 2 -  l)f,, = O(a) and the 
terms of O(a2,aB,$) have been neglected. Therefore, in order to specify 7 up to 
O(a, 8) inclusive, f should be specified up to O(a, B) as well. To do so, the neglected 
terms of O(a2,a/3,p) in (2.1) must be retained. In  Appendix A, we give this 
higher-order correction to the Boussinesq equation (2.1), by which 7 can be obtained 
up to O(a, B) correctly. We note that the refined result agrees perfectly with that of 
the second-order approximation for the solitary wave obtained by Laitone (1960). 
Hence we emphasize again that when (2.1) is used as a basic approximate equation 
in the shallow-water region, it should be kept in mind that f (and therefore 7) cannot 
be evaluated from (2.1) alone up to the terms of O(a, B) correctly. In  this connection, 
as was mentioned in the concluding remarks in I, it should also be emphasized that 
the boundary condition (2.3) gives a fairly large correction of O(@)  to the shallow- 
water region or even a correction of nearly O( 1 )  when 8 5 @, although we have to 
take account of the higher-order terms of ,LA when 8 5 @. 

must be specified. If 
we take the initial maximum elevation of the soliton as the characteristic elevation, 
a is naturally defined, whereas the value of p is not so obvious as that of a since the 

To solve (2.1) under (2.3), the numerical values of a and 
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characteristic length 1 is ambiguous. Unlike a periodic wavetrain, no obvious 
wavelength is defined for a soliton, so that an ‘effective ’ wavelength hrts to be defined. 
Since the coordinate z has already been normalized by this ambiguous length 1 ,  the 
unit length in x corresponds to 1. In other words, the horizontal spread of the elevation 
(3.1) a t  which 7 takes the value 7, (= sech2 (fD)) also corresponds to the length 1. Since 
the elevation (3.1) expressed by the sech2-function has a slimmer form than a 
sech-function, we choose 7, = sech2 (fD) = a, i.e. sech ($D) = f rather than 7, = f. 
Then D ( = [3a/(4/3A2)1 = [3a/(4/3)]+) takes the value 2.63 so that the Ursell param- 
eter (Urselll953) takes the value a//3 = U, = 9.25 (we note incidentally that in most 
experiments, the Ursell parameter U, takes larger values, between about 10 and 40, 
since a longer Z is usually taken). Thus once a is chosen, /3 is automatically determined 
by /3 = a /U,  = 0.108a. Since the value of the Ursell parameter thus chosen is rather 
large, there arises the question of whether the neglected term of O(a2) in (2.1) might 
be comparable with the retained term of O(/?). Therefore, in the following calculation, 
we modify (2.1) so as to include the term iaa”f: f,, (see Appendix A). In accordance 
with this modification, similar corrections for the initial condition are also made by 
taking the higher-order effect of a into account. 

For the choice of suitable values for parameters a and 8, we show in figure 2 
experimental data, where the inclination angle 8 together with the slope tan 8 is taken 
as the abscissa and a and /3 as the ordinate. The solid straight lines represent the 
constant-p lines. The left-hand upper portion above p = 1 .O corresponds to a ‘gentle ’ 
slope, while the right-hand lower portion corresponds to a ‘steep’ slope in the sense 
that the horizontal dimension of the beach is less than one Characteristic wavelength. 
Since the edge-layer theory, as formulated in I, assumes a ‘steep’ beach, we are 
concerned here with the parameters lying on the line /I 5 O(1). The experimental 
results obtained by Ippen & Kulin (1955) and the theoretical one by Peregrine (1967) 
for ‘gentle’ slopes (p > O(1)) are also included for comparison. It waa revealed in I 
that the effect of the beach appears to the shallow-water region only through a factor 
p = /3l cot 8 contained in the ‘reduced’ boundary condition. Interestingly enough, 
it was reported by Pedersen & Gjevik (1983) that the run-up height for a solitary 
wave is crucially determined by the parameter a; cot 8, where a is again the wave 
height-to-depth ratio. Since the parameters a and /3 are assumed to be of comparable 
order of magnitude, a+ cot 8 is equivalent to /3l cot 8 except for the square root of the 
Ursell parameter. Recalling /3l = h/ l ,  however, @ cot 8 (= h cot O/Z) has rather an 
appealing physical significance because it indicates the ratio of the horizontal 
dimension of the beach to the characteristic wavelength, which indicates to what 
depth a soliton penetrates into the beach region. 

In  choosing the parameters a and 8, we must notice one more important point. 
Since the present theory does not presuppose wave breaking, we are concerned here 
with a perfect reflection only. Many authors have given criteria for breaking of waves 
climbing up a plane beach, but the identification of breaking depends crucially on 
observers so that criteria do not seem to be firmly established. Amongst them, we 
refer here to two non-breaking conditions for a plane beach, one obtained by Street 
& Camfield (1966) and the other by Gjevik & Pedersen (1981) (see also Pedersen & 
Gjevik 1983). The former indicates that for an inclination of beach 8 > 0.18( = 10.3”), 
solitary waves surge up the beach surface without breaking, irrespective of the 
magnitude of wave height-to-depth ratio a. The latter indicates that the wave 
breaking during backwash occurs for a > 0.48(tanO)~. In  figure 2, the broken line 
represents the breaking criterion obtained by Street & Camfield (1966) and the chain 
line shows the breaking criterion a = 0.48(tanB)Y by Gjevik & Pedersen (1981). In  the 



106 N .  Sugimto, Y .  Kusaka and T. Kakutani 

I .o 

a 

0.1 

0.01 

l a  I . , . . I  I I , I u I . I , I .  1 I 1 I I 
lo  5" 10" 20' 30' 45' 60" 80" e 

FIQURE 2. The diagram for initial wave height-to-depth ratio u ( = a/h) ,  dispersion parameter 
B ( = (h/Z)*), and inclination of the beach surface tan 8. The solid straight lines represent constant-p 
lines, while broken and chain lines represent, respectively, the breaking criteria obtained by Street 
& Camfield (1966) and by Gjevik k Pedersen (1981). Several experimental and theoretical results 
so far obtained are marked together with the present calculations (Ursell parameter 
U, = u/B = 9.25) where different symbols ( I ,  Hall & Watts 1953; I, Ippen k Kulin 1955; 0, 
Peregrine 1967; A, Kim et al. 1983; A, Pedersen & Gjevik 1983; 0, present calculations) are used 
for respective results. 

following, we choose two typical sets of parameters a and 8, (a = 0.07,O = in) and 
(a = 0.07,8 = kn), to demonstrate a difference owing to the values of /I. For the 
former choice, ,u takes the value 0.15 which is about twice the value of = 0.087 
but comparable with it, while for the latter, ,u takes a fairly large value of ,u = 0.41 
significantly larger than O(&. 

Figures 3 (a) and 4 (a)  show the spatial and temporal variations of the surface 
elevation in the shallow-water region for 8 =in and 8 = & n ,  respectively. The 
numerical scheme to solve the initial-boundary-value problem for the Boussinesq 
equation is given in Appendix B. Taking the shallow-water region bounded by the 
'numerical' boundary at x = L = 4.0 where f, = 0, we have assumed that the initial 
soliton be located at x = C = 2.0. It is, of course, more interesting to take L wider 
than 4.0 in order to investigate long-time evolution of a soliton after reflection. But 
L is chosen here as narrow as possible because the main purpose of this paper is to 
confirm the applicability of the edge-layer theory. For the purpose of comparison with 
the 'computational experiment', L cannot be taken so large that the pursuit of 
the long-time evolution in the shallow-water region is beyond the present scope. The 
right-hand parts of figures 3(a)  and 4(a)  show the spatial variations over the 
shallow-water region 0 < x < L at several times for 0 < t < 5.0. On the other hand, 
the left-hand parts show the temporal variation of the surface elevation observed at 
x = 0 for 0 < t < 5.0. It is found that for 8 = in, the soliton is reflected back without 
any apparent change in waveform, whereas for 0 = &n, the soliton is subjected to 
a substantial change. In  the left-hand of figure 3 (a), the peak indicated by the arrow 
c takes 1.69 at t = 2.09. In  the left-hand of figure 4(a) ,  by contrast, two peaks 
indicated by the arrows b and f appear. The former peak has the value 1.15 at 
t = 1.98, while the latter 0.974 at t = 2.85, which may be interpreted, respectively, 
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FIGURE 3. Comparison of the spatial and temporal variations of the surface elevation in the 
shallow-water region due to (a) the edge-layer theory (b) the BEM for 8 = in and a = 0.07; arrows 
a-e in (a) and (b) correspond to the timesteps a-e shown in figures 5 and 8, respectively. 
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FIGURE 4. Comparison of the spatial and temporal variations of the surface elevation in the 
shallow-water region due to (a) the edge-layer theory (b) the BEM for 8 = and a = 0.07; arrows 
a-g in (a) and (b) correspond to the timesteps u-g shown in figures 6 and 9, respectively. 

as the soliton passing shoreward and that passing seaward after reflection at the 
actual beach. The difference in the number of peaks at x = 0 results naturally from the 
magnitude of p. It is conjectured that as p increases, i.e. the beach region becomes 
wider, the soliton would stay there for a longer period and therefore the two peaks 
for the incident and reflected soliton would tend to be separated. For 8 = ~ T G ,  however, 
the beach region is so narrow that two peaks almost overlap each other. 

Now that the boundary values off and their derivatives at x = 0 are available from 
the solution of the Boussinesq equation, we can proceed to obtain the nearshore 
behaviour in the edge layer. Using those data to evaluate 4, and roo in (2.4a, b) and 
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f = 2.80 \=T7 . & I -  . - - - .  - -  
FIGURE 5. Nearshore behaviour calculated by the edge-layer theory; temporal variations of the 
surface elevation and the velocity field for 8 = &t and a = 0.07, where the small circle at the top 
measures the reference velocity vector with its magnitude 0.05 and the broken line represents the 
still-water level. The timesteps a-e correspond to the times shown in figure 3 (a). 

carrying out the integration in (2.7) numerically, we can obtain the edge-layer 
solution fi. Then (2.6) and (2.14) give the velocity potential and the surface elevation, 
respectively. Figures 5 and 6 show the surface elevation and the velocity vectors 
(q+, $z) at representative points in the edge layer for 8 = in and 8 = &, respectively. 
In figure 5, the timesteps a-e chosen corresponds, respectively, to those indicated by 
the arrows a-e in figure 3 (a). This figure shows an explicit nearshore behaviour, how 
the soliton rushes to the beach and retreats seaward. A t  the timestep c, the movement 
of the water almost vanishes in the edge layer. As mentioned in $1, the surface 
elevation cannot be obtained beyond the quiescent shoreline, i.e. 6 < -cote. The 
maximum ‘run-up’ at this point is attained at t = 2.10 (which is slightly larger than 
t = 2.09 when the maximum surface elevation occurs at x = 0) with its ratio 2.39 to 
the incident soliton. This ratio is somewhat larger than the experimental value 2.27 
observed by Hall t Watts (1953). Figure 6 shows the similar nearshore behaviour 
for 8 = &n. The timesteps a-g chosen correspond to those indicated by the arrows 
a-g shown in figure 4(a). The detailed discussion on this figure will be given in $4 
in connection with the results of the ‘computational experiment’ described there. 
Here we only make the following brief remark. The maximum ‘mn-up’ is attained 
in this case at t = 2.35 with its ratio 3.95 to the incident soliton. This result shows 
an over-estimation compared with the experimental maximum run-up 2.95 observed 
by Hall t Watts (1953). Nevertheless it is rather surprising that the edge-layer theory 
can give a qualitatively good result for the maximum ‘run-up’ in spite of its inherent 
rough assumption near the shoreline. 
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FIQURE 6. Nearshore behaviour calculated by the edge-layer theory; temporal variations of the 
surface elevation and the velocity field for 0 = and a = 0.07, where the small circle at  the top 
measures the reference velocity vector with its magnitude 0.05 and the broken line represents the 
still-water level. The timesteps a-g correspond to the times shown in figure 4(a). 

4. Results of the boundary-element method 
To confirm the validity of the edge-layer theory developed so far, we now consider 

the same reflection problem by using the boundary-element method (BEM). The 
Laplace equation is now solved numerically over the whole region under the full 
nonlinear boundary conditions at the free surface and the free-slip condition a t  the 
beach and bottom surfaces. The numerical scheme used here is essentially the same 
as the one devised by Kim, Liu t Liggett (1983) for the run-up problem, but the initial 
and boundary conditions are different. Since Kim et al. were concerned only with the 
run-up behaviour, the shallow-water region they considered was limited to  be 
relatively narrow and 8 solitary wave was generated by means of a piston-type 
wavemaker with a prescribed motion for a soliton. Obviously i t  is less efficient. in 
computation, to take a wide shallow-water region because of the significant difference 
in the horizontal lengthscales associated with the shallow-water region and the edge 
layer. For the purpose of comparison with the results of the edge-layer theory, 
however, a wider shallow-water region is desirable. As a compromise, the shallow- 
water region is taken here to be in 0 < 2 < L = 4.0, i.e. 0 < < /?-kL. 
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The idea of the BEM is that the Laplace equation is not solved locally but is solved 
globally by its converted integral equation to be satisfied by the boundary values 
of q5 and its outward normal derivatives aq5/an. This conversion to the integral 
equation is provided by the Green’s theorem : 

where $@) denotes symbolically a value of $ at a point p on the boundary 38 of the 
region, while #(a) and a$(q)/an denote values of q5 and aq5/an on the integration point 
q along aS and ds designates its line element ; a parameter K takes ‘II: for a regular point 
on as but it takes an interior angle for a corner point. Here r is the distance between 
points p and q, and the integral in (4.1) is taken in the sense of Cauchy’s principal 
value. 

When the shape of the boundary 3s is known, (4.1) is straightforward to solve 
together with the boundary conditions on as. But the free surface changes its form 
with time according to the boundary conditions given by 

where 6 denotes an angle of the tangent to a surface elevation to the horizontal 
(tan 6 = a(crv)/alJ and a#/& stands for the derivative of $ along the boundary as. 

and 
z is transferred to the quiescent level at the vertical wall (introduced as the 
‘numerical’ boundary in $3) as shown in figure 7. In  order to describe the surging 
movement along the beach surface, the auxiliary coordinates E* and z* rotated by 
an angle y are introduced. For the free surface between A and B, we choose y in such 
a way that it is changed successively from zero for the point A to ?p - t9 for the point 
B on the beach to describe the surging movement. It should be remarked here that 
the introduction of E* and z* does not imply a full coordinate transformation of the 
independent variables in the system of equations (4.2a, b). But they are introduced 
only to measure 7 and q5 along such an auxiliary direction. Denoting the surface 
elevation along z* by av*, the boundary conditions (4.2a, b) are transformed into 

In the following analysis of this section, the origin of the coordinate axes 

(4.34 

on z* = aT*,  

(4.3 b)  

where (aq5/at)* stands for the time derivative of $ moving along the free surface with 
[* held fixed. Here we note that at the free surface between 0 and A in figure 7, 
y is chosen to be zero. Once q5 (and therefore 34/38) and a$/& are known for a definite 
shape of the region at a fixed instant, the temporal evolution of v* and $ can be 
calculated according to the conditions (4.3a, b). 

Next we consider the initial conditions. At an initial time t = 0, we impose them 
in such a way that the peak of the soliton, as if it were steadily propagating shoreward 
from infinity, passes the position 6 = C‘ = -$3-tL located far enough from both the 
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z+ 

FIGURE 7. Definition of the fixed coordinate system (l, z )  and the rotated one (t*, z*) used in the 
BEM, where the elevation at the points between 0 and A is measured along the vertical z-direction 
and the elevation at the points between A and B is measured along the rotated direction z*. 

beach and the 'numerical' vertical wall. From the shallow-water soliton given in $3, 
the initial values for 7, $, and a$/& are taken as 

7 = sech2 Y, 

$ = -(%) 4g i tanh Y, 
(4.4) 

= - (3ap)t cos S sech2 Y tanh Y, 
an 

where Y = {3a/[4(1 +a)]}t(E-C') and a$/an is calculated by ( 4 . 2 ~ ) .  
In  the numerical computations, the boundary ai3 of the region is divided into five 

large segments, O'A, AB, BO, OC, and CO', each of which is further subdivided into 
80, 10, 10, 38, and 10 equally spaced small intervals, respectively. Discretizing the 
integral equation (4.1) by the boundary values for $ and a$/an at the end points of 
the intervals, (4.1) is reduced to a set of simultaneous algebraic equations, which is 
complemented by the boundary conditions (4.3a, b) at the free surface and the 
free-slip condition (a$/an = 0) at the beach and the bottom surfaces. Discretizing 
time by finite differences with an increment of 0.05, a new shape of the free surface 
is calculated by (4.3a, b) after imposing the boundary values a t  the end points. Since 
(4.3a, b) are nonlinear, their evaluation is not so straightforward. We use an iteration 
scheme until convergence for 7, $, and a$/& is achieved with the relative error of 
less than 1 % . Such a technique for iteration is the same as that used by Kim et al. 
(1983) ; refer to their paper for the detailed discussion. 

To check the numerical accuracy of the computations, the total excess volume Q 
and the excess energy E defined below are always monitored at each timestep : 

and (4.5b) 

where Es and Es0 denote, respectively, the horizontal position of the changing shoreline 
and the quiescent level; K is the still-water depth normalized by the uniform depth 
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a \ = y  ..... ..... v -  I = 1.40 

t = 2.80 - I -  

. - I -  

- - - *  

FIQURE 8. Nearshore behaviour calculated by the BEM; temporal variations of the surface elevation 
and the velocity field for 8 = &t and a = 0.07, where the small circle at the top measures the 
reference velocity vector with its magnitude 0.05 and the broken line represents the still-water level. 
The timesteps a-e correspond to the times shown in figure 3 ( b ) .  

h. Incidentally, Kim et al. (1983) have neither imposed the convergence conditions 
for g5 and nor checked the conservation of the total excess volume and energy. 

To compare with the results of the edge-layer theory, the results of the BEM are 
displayed separately for the shallow-water region and for the nearshore region. 
Figures 3(b) and 4 ( b )  show, respectively, the behaviour of the surface elevation in 
the shallow-water region for 8 = in and for 8 = &n, which should be compared with 
that based on the edge-layer theory shown in figures 3(a) and 4(a). In  each figure, 
the right-hand side shows the spatial variations of the surface elevation from t = 0 
to t = 5.0, while the left-hand side shows their temporal variations at x = 0. For 
8 = in, both the waveforms shown in figures 3(a,  b )  appear to be almost the same 
except for the small hump behind the main wave in figure 3 ( b ) .  The peak in the surface 
elevation at  x = 0 takes 1.69 at t = 2.09 in figure 3(a), while it takes 1.63 at t = 2.05 
in figure 3(b). In  the right-hand side of figures 4(a ,  b )  for 8 = &n, both the reflected 
waveforms appear to be similar but not identical. In  the result of the BEM, the phase 
shifts behind that of the edge-layer theory after the reflection (the reason for this will 
be discussed later). It is also observed that the maximum elevation obtained by the 
BEM is slightly lower than that of the edge-layer theory and the width of the main 
wave is slightly wider. Behind the main wave, there are commonly observed small 
depression regions but no rapid oscillating humps are found in the result of the 
edge-layer theory. 

In the temporal variation of the surface elevation at x = 0 shown in the left-hand 
side of figure 4(b),  two peaks are also observed; the first peak b has the value 1.15 
at t = 2.00, while the second onef has the value 0.840 a t  t = 3.30. As conjectured 
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- - -  

- - -  
FIQURE 9. Nearshore behaviour calculated by the BEM; temporal variations of the surface elevation 
and the velocity field for 8 = &c and a = 0.07, where the small circle at the top meaaures the 
reference velocity vector with its magnitude 0.05 and the broken line represents the still-water level. 
The timesteps a-g correspond to the times shown in figure 4 (b). 

in 93, the first peak corresponds to the incident soliton passing shoreward, while the 
second to the one passing seaward after the reflection at the beach. Therefore it is 
naturally supposed that the maximum run-up is attained during a time between the 
two peaks, probably at a time when 7 is minimum (d), which will turn out to be the 
case. By comparing the results of the BEM with those of the edge-layer theory, it 
is rather surprising to me that the elevations and the occurring times of the first peak 
show a very good quantitative agreement. For the second peak, however, the 
elevation in the case of the BEM is slightly lower and subjected to a time lag, which 
is clearly consistent with the phase shift appearing in the spatial variations. 

Next, let us consider the nearshore behaviour. Figures 8 and 9 show the surface 
elevation and the velocity vectors for 8 = 3 and 8 = An, respectively, chosen at the 
corresponding points in figures 5 and 6 based on the edge-layer theory. To obtain 
the velocity components in the interior region, (4.1) with K = 2% is differentiated with 
respect to 6 and z, respectively. We note here that the interpolated boundary values 
for q5 and a$/& have been used. Due to the exact treatment of the free surface, the 
surging movement can now be explicitly calculated. The timesteps a-e chosen in 
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figure 8 correspond to the ones indicated by the arrows a-e shown in figure 3 (b), where 
the maximum surface elevation a t  x = 0 occurs at t = 2.05. The elevation and the 
velocity vectors in figure 8 appear to be almost the same as those in figure 5 except 
for the actual surging movement. The maximum run-up is attained at t = 2.15 with 
its ratio 2.29 to the incident soliton. This ratio gives a slightly larger value than the 
experimental one of 2.27 observed by Hall & Watts (1953), but less than the one of 
2.39 obtained by the edge-layer theory. 

In figure 9, the timesteps a-g chosen correspond to the ones indicated by the arrows 
a-g shown in figure 4 (b). The arrows b and f indicate the timesteps for the maximum 
elevation a t  x = 0 due to the incident soliton and the reflected soliton, respectively, 
while d indicates the timestep for the minimum elevation at x = 0 and g corresponds 
to a timestep for the minimum run-down at the shoreline to be observed. Although 
each time indicated by a-g in figures 6 and 9 is not identical, overall nearshore 
behaviours are very similar to each other except for the actual surging movement. 
It is this surging movement, however, that is responsible for the phase shift observed 
in the shallow-water behaviour calculated by the BEM. Because the shoreline runs 
up along the beach, the effective horizontal dimension of the beach is slightly wider 
than the one fixed in the edge-layer theory so that the soliton stays at the beach for 
a longer period. This produces a substantial phase shift in the shallow-water region. 
The maximum run-up takes the ratio 3.09 at t = 2.60 to the incident soliton, which 
should be compared with 3.95 at t = 2.35 obtained from the edge-layer theory. In 
the BEM, the time t = 2.60 for the maximum run-up agrees perfectly with the time 
when the surface eleation at  x = 0 becomes minimum (arrow d in figure 4b) .  In the 
edge-layer theory, however, both times are slightly different; the time for the 
maximum ‘run-up’ is observed at t = 2.35 whereas the time for the minimum 
elevation a t  t = 2.44. 

Finally we mention the results about the conservation of total excess volume and 
energy (4.5a, b). It is found that, for both the cases with 8 = in and 8&n, the excess 
volume is always conserved within a relative error sufficiently less than 1 % . On the 
other hand, the energy is almost conserved within a relative error of 1 % for 8 = in, 
whereas it decreases by several per cent for 8 = &n when t > 3.25. 

5. Conclusion 
We have demonstrated how the edge-layer theory can be applied effectively to the 

reflection problem of a shallow-water soliton at a sloping beach. It is found that the 
‘reduced’ boundary condition, in spite of its simple form, can give a substantial effect 
of the beach on the Boussinesq equation which was originally proposed to describe 
shallow-water waves on an infinitely extended layer with uniform depth. According 
to the result due to the BEM shown in figure 4(b) ,  i t  is not so striking to observe 
that two peaks appearing in the surface elevation at  x = 0 correspond to the peaks 
of the incident and reflected solitons. But in the edge-layer theory, it is rather 
surprising to see that such a simple ‘reduced’ boundary condition can give the two 
peaks fairly correctly. For the nearshore behaviour, however, the edge-layer theory 
has an inherent drawback incapable of describing the actual surging movement along 
the beach surface. Nevertheless it is supported by the BEM that it can qualitatively 
describe the nearshore behaviour except for this surging movement. Thus it may be 
concluded that the edge-layer theory can give a qualitatively adequate result for the 
overall reflection problem of a shallow-water soliton. 
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Appendix A. Higher-order correction to the Boussinesq equation 
Here we briefly give the results for the higher-order correction to the Boussinesq 

equation (2.1) by retaining the neglected terms of O(a2, aP,$). Following the same 
procedure as shown in $2 of I and retaining the neglected terms, we have the 
higher-order Boussinesq equation which gives the correct result for 7 in (2.2) up to 
O(a, B) : 

f t t  -fm - V f x x t t  + aft f x x  + 2afzfxt + +.”f:fZ, + h f l f t f z z  + (f3 t l x x  

+ W ( f t e ) t t t  -aP(fzfztt) t  -$5B2fiztttt = O ( a P ,  a2B, $1. (A 1) 

If one seeks a progressive-wave solution off in the form of f(z + At) = f(X) and uses 
(2 .2) ,  the higher-order soliton solutions are obtained as 

I 1 
AD 

f=--[l-$++ tanh2(DX)] tanh(DX)+ ..., 

and 

with 

7 = sech2 (DX) -+ sechz (DX) tanh’ (DX) + . . . , 
A = +( 1+*-*a+ ...), 

and 3a 
D2 = -( 1-@+ ...), 

4P 
which agree perfectly with the result of the second-order theory for a solitary wave 
obtained by Laitone (1960). 

Appendix B. Implicit finitadifference scheme to solve the Boussinesq 
equation 

First we divide the bounded-space region into N equally spaced intervals with 
length Ax = L/N and also discretize the time by a small interval At. Denotingf(x, t )  
at each mesh point by f ( IAz ,JAt)  = f ( I , J )  simply, I and J being integers, we 
approximate (2.1 ) by using the second-order central-difference formulae. Then we 
have the following difference equation that approximates (2.1) with the correction 
term $a.”f: f,, : 

[ -p’+ a’Atg(1, J ) ] f ( I +  1, J +  1) + [(A@ + 2/3’+2a’Ath(I, J ) ] f ( I ,  J +  1) 
+ [ -p -a ’Atg ( I ,  J ) ] f ( I -  1, J +  1) 

+a’At[2f( l ,  J -  l ) h ( I ,  J ) + g ( l ,  J ) g ( I ,  J -  1 ) ] - 6 a ’ e ( A ~ / ~ ) a g ( I , J ) 2 h ( 1 , J ) ,  
= (Ax)’ [ 2 f ( I , J ) - f ( I ,  J -  i ) ]+(At) ’h( l ,J )+/3”h(I ,  J - I ) -Zh(I ,J ) ]  

(B l a )  

(B 1b)  

(B 1 4  

where g(I, J )  and h(I,  J )  are defined as 

g(I, J )  = fV+ 1, J )  -f(I- 1, J ) ,  

h ( I , J )  = f ( l+  l , J ) - 2 f ( I , J ) + f ( I -  LJ), 
and a’ = ia and p’ = $?. 
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Next we consider the boundary conditions. A t  the sloping beach x = 0, we use 
(2.3), whereas at the 'numerical' boundary x = L, we simply impose f, = 0 for a 
'vertical beach', since the boundary condition at x = L is not so important as the 
one at x = 0. To approximate the boundary condition (2.3) and the one at x = L, we 
introduce two fictitious points f ( - 1, J) and f(N+ 1, J) outside the region concerned. 
Then the boundary condition (2.3) and the one a t  x = L are approximated by 

(1 +a+ 39'+9~") f ( - 1, J) 
= (29 + 108' + 428") f (0, J) + ( 1 - s - 12s' - 799") f ( 1, J) + (6s' + 76s") f (2, J) 

-(9'+39tf"'f(3,J)+ lOd'f(4,J)-d'f(5,J), (B 2) 

and (B 3) 

respectively, where s = 2p/Ax, s' = ~ ~ / [ 2 ( A x ) ~ ]  = isS2, and s" = ~ ~ / [ 1 2 ( A x ) ~ ]  = $s3, 
and f,,, and f,,,, are evaluated, respectively, by biased five-point and seven-point 
finite-difference formulae : 

f (N+ 1 9 4  = f (N- 1, J ) ,  

, (B 4 4  
- 3 f ( - 1, J) + 10 f (0, J) - 12 f ( 1, J) + 6 f (2, J) - f (3, J) 

f x x x  = 2(aX)3 

On the other hand, the initial condition for f (I, 0) is given by the right-hand side 
of (3.2) with t = 0 and x = IAx. To push the soliton shoreward, we impose another 
condition thatf(1, - 1) should be given by the right-hand side of (3.2) with t = -At 
and x = IAx. The higher-order corrections to these conditions are given by (A 2). 
Thusprovidedf(1,J-l)andf(I,J)(O< J, -1 < I <  N+l)areknownuptoJ,(B l), 
(B 2), and (B 3) give N + 3  implicit relations among f ( I , J +  1). Using the Gaussian 
elimination method, we solve these simultaneous equations stepwise to obtain 
numerical solutions. 

Checking the condition of linear stability for the present numerical scheme, it is 
found that Ax and At must satisfy the condition 

(At)2-  AX)^ < $?. (B 5 )  

Therefore if At is chosen to be equal to Ax, the scheme is unconditionally stable for 
the linear problem. But we note that this condition does not take account of the effects 
of the boundaries. Finally we note that N in the present calculations is taken to be 
320 so that Ax = At = 0.0125 for L = 4.0. 
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